Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases.

نویسندگان

  • J Thompson
  • S B Ruvinov
  • D I Freedberg
  • B G Hall
چکیده

The gene celF of the cryptic cel operon of Escherichia coli has been cloned, and the encoded 6-phospho-beta-glucosidase (cellobiose-6-phosphate [6P] hydrolase; CelF [EC 3.2.1.86]) has been expressed and purified in a catalytically active state. Among phospho-beta-glycosidases, CelF exhibits unique requirements for a divalent metal ion and NAD(+) for activity and, by sequence alignment, is assigned to family 4 of the glycosylhydrolase superfamily. CelF hydrolyzed a variety of P-beta-glucosides, including cellobiose-6P, salicin-6P, arbutin-6P, gentiobiose-6P, methyl-beta-glucoside-6P, and the chromogenic analog, p-nitrophenyl-beta-D-glucopyranoside-6P. In the absence of a metal ion and NAD(+), purified CelF was rapidly and irreversibly inactivated. The functional roles of the cofactors have not been established, but NAD(+) appears not to be a reactant and there is no evidence for reduction of the nucleotide during substrate cleavage. In solution, native CelF exists as a homotetramer (M(w), approximately 200,000) composed of noncovalently linked subunits, and this oligomeric structure is maintained independently of the presence or absence of a metal ion. The molecular weight of the CelF monomer (M(r), approximately 50,000), estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is in agreement with that calculated from the amino acid sequence of the polypeptide (450 residues; M(r) = 50,512). Comparative sequence alignments provide tentative identification of the NAD(+)-binding domain (residues 7 to 40) and catalytically important glutamyl residues (Glu(112) and Glu(356)) of CelF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum.

Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of beta-1,3- and beta-1,4-linked beta-D-glucose units. C. acetobutylicum does not degrade cellulose, although its genome sequence contains several cellulase-encoding genes and a complete cellulosome clu...

متن کامل

Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85.

Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose diges...

متن کامل

Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.

Wild-type Escherichia coli are not able to utilize beta-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel operon consists of five genes: celA, who...

متن کامل

Detection and Molecular Characterization of Sorbitol Negative Shiga Toxigenic Escherichia Coli in Chicken from Northwest of Iran

Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens primarily associated with the consumption of contaminated ground beef and are an important food safety concern worldwide. STEC has been found to produce a family of related cytotoxins known as Shiga toxins (Stxs). Shiga toxins have been classified into two major classes, Stx1 and Stx2. A single strains of STEC can produce St...

متن کامل

Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli.

Cellulolytic strains of Bacillus stearothermophilus were isolated from nature and screened for the presence of activities associated with the degradation of plant cell walls. One isolate (strain XL-65-6) which exhibited strong activities with 4-methylumbelliferyl-beta-D-glucopyranoside (MUG) and 4-methylumbelliferyl-beta-D-cellobiopyranoside (MUC) was used to construct a gene library in Escheri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 23  شماره 

صفحات  -

تاریخ انتشار 1999